Detecting clusters of different geometrical shapes in microarray gene expression data
نویسندگان
چکیده
MOTIVATION Clustering has been used as a popular technique for finding groups of genes that show similar expression patterns under multiple experimental conditions. Many clustering methods have been proposed for clustering gene-expression data, including the hierarchical clustering, k-means clustering and self-organizing map (SOM). However, the conventional methods are limited to identify different shapes of clusters because they use a fixed distance norm when calculating the distance between genes. The fixed distance norm imposes a fixed geometrical shape on the clusters regardless of the actual data distribution. Thus, different distance norms are required for handling the different shapes of clusters. RESULTS We present the Gustafson-Kessel (GK) clustering method for microarray gene-expression data. To detect clusters of different shapes in a dataset, we use an adaptive distance norm that is calculated by a fuzzy covariance matrix (F) of each cluster in which the eigenstructure of F is used as an indicator of the shape of the cluster. Moreover, the GK method is less prone to falling into local minima than the k-means and SOM because it makes decisions through the use of membership degrees of a gene to clusters. The algorithmic procedure is accomplished by the alternating optimization technique, which iteratively improves a sequence of sets of clusters until no further improvement is possible. To test the performance of the GK method, we applied the GK method and well-known conventional methods to three recently published yeast datasets, and compared the performance of each method using the Saccharomyces Genome Database annotations. The clustering results of the GK method are more significantly relevant to the biological annotations than those of the other methods, demonstrating its effectiveness and potential for clustering gene-expression data. AVAILABILITY The software was developed using Java language, and can be executed on the platforms that JVM (Java Virtual Machine) is running. It is available from the authors upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at http://dragon.kaist.ac.kr/gk.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملIntegration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2005